Rabbit Polyclonal SIRT1 antibody (STJ95667)

$99.00$319.00

Reactivity: Human, Mouse
Applications: WB, IHC, IF
Conjugation: Unconjugated
Supplier: St John’s Laboratory Ltd.

Clear
-$50 as credit for submitting review for primary antibody
Shipping notice:
Product will be delivered in 6 to 8 Business Days

Antibody Validation Project, Antibody Trial Sample, Antibody Free Sample for your own antibody validation and submitting antibody reviews, AntibodyPlus

Rabbit Polyclonal SIRT1 antibody (STJ95667)

Supplier: St John’s Laboratory Ltd.

Recommended applications: WB, IHC, ELISA

Recommended dilution: WB 1:500-1:2000; IHC 1:100-1:300; ELISA 1:5000;

Recommended protocols: check protocols

Image descriptions:

Click or hover above images to see image description for SIRT1 Polyclonal Antibody.

Alternative names:

Check alternative names for the antibody

Expand

SIRT1 antibody, SIR2L1 antibody,|75SirT1 antibody|hSIR2 antibody|hSIRT1 antibody|HST2, S. cerevisiae, homolog of antibody|NAD dependent deacetylase sirtuin 1 antibody|NAD dependent protein deacetylase sirtuin 1 antibody|OTTHUMP00000198111 antibody|OTTHUMP00000198112 antibody|Regulatory protein SIR2 homolog 1 antibody|SIR1_HUMAN antibody|SIR2 antibody|SIR2 like 1 antibody|SIR2 like protein 1 antibody|SIR2, S.cerevisiae, homolog-like 1 antibody|SIR2-like protein 1 antibody|SIR2ALPHA antibody|SIR2L1 antibody|Sirt1 antibody|SirtT1 75 kDa fragment antibody|Sirtuin (silent mating type information regulation 2 homolog) 1 (S. cerevisiae) antibody|Sirtuin 1 antibody|Sirtuin type 1 antibody|Anti-SIRT1 antibody [19A7AB4] (ab110304)
SCBT cat No: To be updated

Name

SIRT1 Polyclonal Antibody

Catalogue No.

STJ95667

Reactivity

Human, Mouse

Specificity

SIRT1 Polyclonal Antibody detects endogenous levels of SIRT1 protein.

Immunogen

Synthesized peptide derived from SIRT1 at AA range 30-110

Host

Rabbit

Applications

WB, IHC, ELISA

Recommended dilution

WB 1:500-1:2000; IHC 1:100-1:300; ELISA 1:5000;

Clonality

Polyclonal

Conjugation

Unconjugated

Isotype

IgG

Molecular weight

110 kDa

Formulation

SIRT1 Antibody was tube-contained. Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

Concentration

1 mg/ml

Purification

SIRT1 Antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific immunogen.

Storage

-20 Celsius degree. Avoid repeated freeze/thaw cycles.

Alternative antibody names

NAD-dependent protein deacetylase sirtuin-1 antibody, hSIRT1 antibody, Regulatory protein SIR2 homolog 1 antibody, SIR2-like protein 1 antibody, hSIR2 antibody

Database links

Human UniProt/Swiss-Prot:Q96EB6;Mouse UniPort/Swiss-Prot: Q923E4;Human Entrez Gene: 23411;Mouse Entrez Gene: 93759;

Protein names

NAD-dependent protein deacetylase sirtuin-1 , hSIRT1 , Regulatory protein SIR2 homolog 1 , SIR2-like protein 1 , hSIR2

Protein function

NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metobolism, apoptosis and autophagy. Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression. Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively. Serves as a sensor of the cytosolic ratio of NAD+/NADH which is altered by glucose deprivation and metabolic changes associated with caloric restriction. Is essential in skeletal muscle cell differentiation and in response to low nutrients mediates the inhibitory effect on skeletal myoblast differentiation which also involves 5′-AMP-activated protein kinase (AMPK) and nicotinamide phosphoribosyltransferase (NAMPT). Component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD+/NADP+ ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at ‘Lys-9’ (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. Deacetylates ‘Lys-266’ of SUV39H1, leading to its activation. Inhibits skeletal muscle differentiation by deacetylating PCAF and MYOD1. Deacetylates H2A and ‘Lys-26’ of HIST1H1E. Deacetylates ‘Lys-16’ of histone H4 (in vitro). Involved in NR0B2/SHP corepression function through chromatin remodeling: Recruited to LRH1 target gene promoters by NR0B2/SHP thereby stimulating histone H3 and H4 deacetylation leading to transcriptional repression. Proposed to contribute to genomic integrity via positive regulation of telomere length; however, reports on localization to pericentromeric heterochromatin are conflicting. Proposed to play a role in constitutive heterochromatin (CH) formation and/or maintenance through regulation of the available pool of nuclear SUV39H1. Upon oxidative/metabolic stress decreases SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination by MDM2. This increase in SUV39H1 levels enhances SUV39H1 turnover in CH, which in turn seems to accelerate renewal of the heterochromatin which correlates with greater genomic integrity during stress response. Deacetylates ‘Lys-382’ of p53/TP53 and impairs its ability to induce transcription-dependent proapoptotic program and modulate cell senescence. Deacetylates TAF1B and thereby represses rDNA transcription by the RNA polymerase I. Deacetylates MYC, promotes the association of MYC with MAX and decreases MYC stability leading to compromised transformational capability. Deacetylates FOXO3 in response to oxidative stress thereby increasing its ability to induce cell cycle arrest and resistance to oxidative stress but inhibiting FOXO3-mediated induction of apoptosis transcriptional activity; also leading to FOXO3 ubiquitination and protesomal degradation. Appears to have a similar effect on MLLT7/FOXO4 in regulation of transcriptional activity and apoptosis. Deacetylates DNMT1; thereby impairs DNMT1 methyltransferase-independent transcription repressor activity, modulates DNMT1 cell cycle regulatory function and DNMT1-mediated gene silencing. Deacetylates RELA/NF-kappa-B p65 thereby inhibiting its transactivating potential and augments apoptosis in response to TNF-alpha. Deacetylates HIF1A, KAT5/TIP60, RB1 and HIC1. Deacetylates FOXO1 resulting in its nuclear retention and enhancement of its transcriptional activity leading to increased gluconeogenesis in liver. Inhibits E2F1 transcriptional activity and apoptotic function, possibly by deacetylation. Involved in HES1- and HEY2-mediated transcriptional repression. In cooperation with MYCN seems to be involved in transcriptional repression of DUSP6/MAPK3 leading to MYCN stabilization by phosphorylation at ‘Ser-62’. Deacetylates MEF2D. Required for antagonist-mediated transcription suppression of AR-dependent genes which may be linked to local deacetylation of histone H3. Represses HNF1A-mediated transcription. Required for the repression of ESRRG by CREBZF. Modulates AP-1 transcription factor activity. Deacetylates NR1H3 AND NR1H2 and deacetylation of NR1H3 at ‘Lys-434’ positively regulates transcription of NR1H3:RXR target genes, promotes NR1H3 proteosomal degradation and results in cholesterol efflux; a promoter clearing mechanism after reach round of transcription is proposed. Involved in lipid metabolism. Implicated in regulation of adipogenesis and fat mobilization in white adipocytes by repression of PPARG which probably involves association with NCOR1 and SMRT/NCOR2. Deacetylates ACSS2 leading to its activation, and HMGCS1. Involved in liver and muscle metabolism. Through deacteylation and activation of PPARGC1A is required to activate fatty acid oxidation in skeletel muscle under low-glucose conditions and is involved in glucose homeostasis. Involved in regulation of PPARA and fatty acid beta-oxidation in liver. Involved in positive regulation of insulin secretion in pancreatic beta cells in response to glucose; the function seems to imply transcriptional repression of UCP2. Proposed to deacetylate IRS2 thereby facilitating its insulin-induced tyrosine phosphorylation. Deacetylates SREBF1 isoform SREBP-1C thereby decreasing its stability and transactivation in lipogenic gene expression. Involved in DNA damage response by repressing genes which are involved in DNA repair, such as XPC and TP73, deacetylating XRCC6/Ku70, and faciliting recruitment of additional factors to sites of damaged DNA, such as SIRT1-deacetylated NBN can recruit ATM to initiate DNA repair and SIRT1-deacetylated XPA interacts with RPA2. Also involved in DNA repair of DNA double-strand breaks by homologous recombination and specifically single-strand annealing independently of XRCC6/Ku70 and NBN. Transcriptional suppression of XPC probably involves an E2F4:RBL2 suppressor complex and protein kinase B (AKT) signaling. Transcriptional suppression of TP73 probably involves E2F4 and PCAF. Deacetylates WRN thereby regulating its helicase and exonuclease activities and regulates WRN nuclear translocation in response to DNA damage. Deacetylates APEX1 at ‘Lys-6’ and ‘Lys-7’ and stimulates cellular AP endonuclease activity by promoting the association of APEX1 to XRCC1. Increases p53/TP53-mediated transcription-independent apoptosis by blocking nuclear translocation of cytoplasmic p53/TP53 and probably redirecting it to mitochondria. Deacetylates XRCC6/Ku70 at ‘Lys-539’ and ‘Lys-542’ causing it to sequester BAX away from mitochondria thereby inhibiting stress-induced apoptosis. Is involved in autophagy, presumably by deacetylating ATG5, ATG7 and MAP1LC3B/ATG8. Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to PIP3 and promotes their activation. Proposed to play role in regulation of STK11/LBK1-dependent AMPK signaling pathways implicated in cellular senescence which seems to involve the regulation of the acetylation status of STK11/LBK1. Can deacetylate STK11/LBK1 and thereby increase its activity, cytoplasmic localization and association with STRAD; however, the relevance of such activity in normal cells is unclear. In endothelial cells is shown to inhibit STK11/LBK1 activity and to promote its degradation. Deacetylates SMAD7 at ‘Lys-64’ and ‘Lys-70’ thereby promoting its degradation. Deacetylates CIITA and augments its MHC class II transactivation and contributes to its stability. Deacteylates MECOM/EVI1. Deacetylates PML at ‘Lys-487’ and this deacetylation promotes PML control of PER2 nuclear localization. During the neurogenic transition, repress selective NOTCH1-target genes through histone deacetylation in a BCL6-dependent manner and leading to neuronal differentiation. Regulates the circadian expression of several core clock genes, including ARNTL/BMAL1, RORC, PER2 and CRY1 and plays a critical role in maintaining a controlled rhythmicity in histone acetylation, thereby contributing to circadian chromatin remodeling. Deacetylates ARNTL/BMAL1 and histones at the circadian gene promoters in order to facilitate repression by inhibitory components of the circadian oscillator. Deacetylates PER2, facilitating its ubiquitination and degradation by the proteosome. Protects cardiomyocytes against palmitate-induced apoptosis (PubMed:11672523, PubMed:12006491, PubMed:14976264, PubMed:14980222, PubMed:15126506, PubMed:15152190, PubMed:15205477, PubMed:15469825, PubMed:15692560, PubMed:16079181, PubMed:16166628, PubMed:16892051, PubMed:16998810, PubMed:17283066, PubMed:17334224, PubMed:17505061, PubMed:17612497, PubMed:17620057, PubMed:17936707, PubMed:18203716, PubMed:18296641, PubMed:18662546, PubMed:18687677, PubMed:19188449, PubMed:19220062, PubMed:19364925, PubMed:19690166, PubMed:19934257, PubMed:20097625, PubMed:20100829, PubMed:20203304, PubMed:20375098, PubMed:20620956, PubMed:20670893, PubMed:20817729, PubMed:21149730, PubMed:21245319, PubMed:21471201, PubMed:21504832, PubMed:21555002, PubMed:21698133, PubMed:21701047, PubMed:21775285, PubMed:21807113, PubMed:21841822, PubMed:21890893, PubMed:21909281, PubMed:21947282, PubMed:22274616). Deacetylates XBP1 isoform 2; deacetylation decreases protein stability of XBP1 isoform 2 and inhibits its transcriptional activity (PubMed:20955178). Involved in the CCAR2-mediated regulation of PCK1 and NR1D1 (PubMed:24415752). Deacetylates CTNB1 at ‘Lys-49’ (PubMed:24824780). In POMC (pro-opiomelanocortin) neurons, required for leptin-induced activation of PI3K signaling (By similarity). / Isoform 2: Isoform 2 is shown to deacetylate ‘Lys-382′ of p53/TP53, however with lower activity than isoform 1. In combination, the two isoforms exert an additive effect. Isoform 2 regulates p53/TP53 expression and cellular stress response and is in turn repressed by p53/TP53 presenting a SIRT1 isoform-dependent auto-regulatory loop. / (Microbial infection) In case of HIV-1 infection, interacts with and deacetylates the viral Tat protein. The viral Tat protein inhibits SIRT1 deacetylation activity toward RELA/NF-kappa-B p65, thereby potentiates its transcriptional activity and SIRT1 is proposed to contribute to T-cell hyperactivation during infection. / SirtT1 75 kDa fragment: catalytically inactive 75SirT1 may be involved in regulation of apoptosis. May be involved in protecting chondrocytes from apoptotic death by associating with cytochrome C and interfering with apoptosome assembly. / NAD+ + an acetylprotein = nicotinamide + O-acetyl-ADP-ribose + a protein. / Zn2+ / Inhibited by nicotinamide. Activated by resveratrol (3,5,4′-trihydroxy-trans-stilbene), butein (3,4,2′,4′-tetrahydroxychalcone), piceatannol (3,5,3′,4′-tetrahydroxy-trans-stilbene), Isoliquiritigenin (4,2′,4′-trihydroxychalcone), fisetin (3,7,3′,4′-tetrahydroxyflavone) and quercetin (3,5,7,3′,4’-pentahydroxyflavone). MAPK8/JNK1 and RPS19BP1/AROS act as positive regulators of deacetylation activity. Negatively regulated by CCAR2.

Protein tissue specificity

Widely expressed.

Protein sequence and domain

Belongs to the sirtuin family. Class I subfamily. / Contains 1 deacetylase sirtuin-type domain.

Protein post-translational modifications

Methylated on multiple lysine residues; methylation is enhanced after DNA damage and is dispensable for deacetylase activity toward p53/TP53. / Phosphorylated. Phosphorylated by STK4/MST1, resulting in inhibition of SIRT1-mediated p53/TP53 deacetylation. Phosphorylation by MAPK8/JNK1 at Ser-27, Ser-47, and Thr-530 leads to increased nuclear localization and enzymatic activity. Phosphorylation at Thr-530 by DYRK1A and DYRK3 activates deacetylase activity and promotes cell survival. Phosphorylation by mammalian target of rapamycin complex 1 (mTORC1) at Ser-47 inhibits deacetylation activity. Phosphorylated by CaMK2, leading to increased p53/TP53 and NF-kappa-B p65/RELA deacetylation activity (By similarity). Phosphorylation at Ser-27 implicating MAPK9 is linked to protein stability. There is some ambiguity for some phosphosites: Ser-159/Ser-162 and Thr-544/Ser-545. / Proteolytically cleaved by cathepsin B upon TNF-alpha treatment to yield catalytic inactive but stable SirtT1 75 kDa fragment (75SirT1). / S-nitrosylated by GAPDH, leading to inhibit the NAD-dependent protein deacetylase activity.

Protein cellular localization

Nucleus > PML body / Cytoplasm / Nucleus / Cytoplasm / Mitochondrion

Research area

All research areas>Signaling Intermediates>SIRT
(View all antibody categories related to Signaling Intermediates)

Note

AntibodyPlus can customize SIRT1 Antibody according to your requirement, including bulk product size,etc. Please contact info@antibodyplus.com. AntibodyPlus provide antibody trial sample for your own antibody validation and collects antibody reviews.

Supplier

St John’s Laboratory Ltd.

Product type

Primary antibody

Reviews


There are no reviews yet.

Only logged in customers who have purchased this product may leave a review

There are no reviews for this product yet.
By submitting a review, get following benefits:

1. Receive $50 ABcoins as credit for each review.
2. First trial sample order will be fully refunded as credit.
3. Have a chance to win a $50 amazon gift card!

view database submit reviews
 

Immunofluorescence analysis of Rat lung tissue

1: SIRT1 Polyclonal Antibody(red) was diluted at 1:200 (4 degree Celsius,overnight).
2: Cy3 labled Secondary antibody was diluted at 1:300 (room temperature, 50min).
3: Picture B: DAPI(blue) 10min. Picture A:Target. Picture B: DAPI. Picture C: merge of A+B.
 

Immunofluorescence analysis of Rat lung tissue

1: SIRT1 Polyclonal Antibody(red) was diluted at 1:200 (4 degree Celsius,overnight).
2: Cy3 labled Secondary antibody was diluted at 1:300 (room temperature, 50min).
3: Picture B: DAPI(blue) 10min. Picture A:Target. Picture B: DAPI. Picture C: merge of A+B.
 

Immunofluorescence analysis of Rat spleen tissue

1: SIRT1 Polyclonal Antibody(red) was diluted at 1:200 (4 degree Celsius,overnight).
2: Cy3 labled Secondary antibody was diluted at 1:300 (room temperature, 50min).
3: Picture B: DAPI(blue) 10min. Picture A:Target. Picture B: DAPI. Picture C: merge of A+B.
 

Immunofluorescence analysis of Rat spleen tissue

1: SIRT1 Polyclonal Antibody(red) was diluted at 1:200 (4 degree Celsius,overnight).
2: Cy3 labled Secondary antibody was diluted at 1:300 (room temperature, 50min).
3: Picture B: DAPI(blue) 10min. Picture A:Target. Picture B: DAPI. Picture C: merge of A+B.
 

Immunohistochemical analysis of paraffin embedded Human uterus tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Human uterus cancer tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Human colon tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Human liver cancer tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Human lung cancer tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Rat testis tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Rat liver tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Rat lung tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Rat kidney tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Rat spinal cord tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Rat brain tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Rat spleen tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Mouse heart tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Mouse testis tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Mouse colon tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Mouse liver tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Mouse lung tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Mouse kidney tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Mouse brain tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.
 

Immunohistochemical analysis of paraffin embedded Mouse spleen tissue

1: SIRT1 Polyclonal Antibody was diluted at 1:200 (4 degree Celsius,overnight).
2: Sodium citrate pH 6.0 was used for antibody retrieval (>98 degree Celsius,20min).
3: Secondary antibody was diluted at 1:200 (room temperature, 30min). Negative control was used by secondary antibody only.


Welcome to AntibodyPlus!